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ABSTRACT: The traditional structure−function para-
digm has provided significant insights for well-folded
proteins in which structures can be easily and rapidly
revealed by X-ray crystallography beamlines. However,
approximately one-third of the human proteome is
comprised of intrinsically disordered proteins and regions
(IDPs/IDRs) that do not adopt a dominant well-folded
structure, and therefore remain “unseen” by traditional
structural biology methods. This Perspective considers the
challenges raised by the “Dark Proteome”, in which
determining the diverse conformational substates of IDPs
in their free states, in encounter complexes of bound
states, and in complexes retaining significant disorder
requires an unprecedented level of integration of multiple
and complementary solution-based experiments that are
analyzed with state-of-the art molecular simulation,
Bayesian probabilistic models, and high-throughput
computation. We envision how these diverse experimental
and computational tools can work together through
formation of a “computational beamline” that will allow
key functional features to be identified in IDP structural
ensembles.

■ INTRODUCTION

Intrinsic protein disorder can refer to either local, disordered
regions of a protein containing one or more folded domains
(“intrinsically disordered regions”, IDRs), or global protein
disorder without any stable structure along the entire sequence
(“intrinsically disordered proteins”, IDPs). IDPs and IDRs,
which are estimated to make up approximately one-third of the
human genome,1−4 pose new challenges for the structure−
function paradigm since they take advantage of their disordered
state to interact with numerous partners for signaling,
regulation, and transcription.5−8 At the same time, disease-
related proteins are highly enriched in IDRs, including those
that are central to neurodegenerative disorders such as
Parkinson’s disease, Huntington’s disease, prion diseases, and

Alzheimer’s disease, as well as cancer-associated proteins that
have a primary function in regulatory protein interactions.9

The greater biological challenge posed by the IDP class of
proteins relative to the singular folded counterpart is that the
disorder in their free and bound complex states is integral to
their function. In their monomeric or unbound forms, IDPs
adopt neither a single nor a small number of stable folded
conformations, and the energy landscape of the free IDP lacks a
deep minimum, unlike that of a folded globular protein.10,11

Nonetheless, the structural characterization of an IDP in its free
state is paramount to understanding the biology of the static or
dynamic complexes that it forms with other ordered or
disordered proteins. Depending on the dissociation constant,
KD, there can be a significant population of the unbound form,
even in the crowded cell, for some IDPs.12 A high degree of
disorder and rapid interconversion between states is necessary
for different IDRs to become accessible or inaccessible to
binding and/or post-translational modifications important for
regulation and signaling in the protein complex.13 In describing
the disorder-to-order transitions that can occur when
disordered proteins fold upon binding to their targets, Arai
and co-workers have found that the sub-populations of the
unbound protein ensemble influence the mechanism of
complex formation,14 a conclusion that needs to be further
examined for a range of different IDP systems. In regard to the
recent discovery of a small-molecule drug that, in cellular
models of α-synuclein-mediated dysfunction, points to a
potential strategy for treating Parkinson’s disease,15 the accurate
determination of the conformational ensemble of the free
protein might aid in a corresponding molecular interpretation
of how such a drug works, and therefore how best to target
other disease-related IDPs.
The biological activity of an IDP is typically identified by the

protein complexes that it forms: an IDP can make “static”
(well-ordered) or “dynamic” (disordered) interactions, or both,
with different sites on the target protein surface. Many IDPs
contain short amphipathic motifs, termed molecular recog-
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nition elements (MoRFs),16 which fold into regular secondary
structures such as α-helix or β-strand or adopt irregular
structures upon binding to their targets. An important feature
of the recognition elements in many IDPs is that they exhibit
conformational plasticity; i.e., they can fold into different
structures on binding to different targets. Additional dynamic
interactions involving adjacent regions to the MoRFs of the
IDP frequently enhance the binding affinity, enabling them to
interact with multiple targets and to create accessibility of sites
for post-translational modification.
IDPs can bind with high specificity but modest affinity,6,7 an

attribute that enables spontaneous dissociation or displacement
after signaling is complete.6,7,17−19 This is supported by the fact
that, when comparing IDPs to folded proteins, their average
affinity is indeed lower than that of folded proteins,20 and while
the distribution of KD shows considerable overlap between
IDPs and folded proteins,20 the definition of high specificity
needs to be put in perspective. In particular, to obtain the same
overall degree of specificity given by a disordered sequence,
which can wrap around a target and provide an extremely large
contact area, a folded protein binding a smaller interaction
surface would have to have larger specificity per unit area.
The dynamics within a complex with multiple exchanging

interacting elements can also facilitate displacement, partic-
ularly for cases with higher affinity interactions. One such
example is the low-nanomolar affinity complex of the
eukaryotic translation initiation factor 4E and the disordered
4E-binding protein 2 (4E-BP2).21 This complex involves two
adjacent elements of 4E-BP2, a canonical 4E-binding helical
motif and a less regular C-terminal region, that appear to
dynamically exchange on the millisecond-to-microsecond time
scale, facilitating phosphorylation at the interface required to
break the complex22 and enable translation to proceed. Another
functionally important dynamic complex involves the disor-
dered Sic1 cyclin-dependent kinase inhibitor and the Cdc4
subunit of an SCF ubiquitin ligase. Phosphorylation of about six
or more of the nine sites on Sic1 enables low-micromolar
affinity binding. Dynamic exchange of each site on and off of
Cdc4 facilitates ultrasensitive binding, leading to controlled
degradation and a sharp cell−cycle switch, as well as efficient
multisite ubiquitination.23−25 A further illustration of the
dynamic complexes that IDPs can form is found with the
disordered regulatory (R) region of the cystic fibrosis
transmembrane conductance regulator (CFTR) that acts as
an interaction hub with both intramolecular and intermolecular
partners to integrate input for controlling CFTR channel
activity.26,27 One of these partners, 14-3-3β, involved in CFTR
processing, has two binding sites within its dimer into which
nine phosphorylated segments of the CFTR R region
dynamically exchange.28 Thus, structural characterization of
IDPs/IDRs in both free and bound forms, with a range of
dynamics and disorder, is paramount to understanding their
biology, and expansion of the structure−function paradigm to a
structural ensemble is a necessary consideration for this class of
protein.
Structures of biomolecules have driven functional insight into

molecular biology and biochemistry ever since Watson and
Crick advanced the structural model of DNA, and computa-
tional models are integral to rendering structural and dynamical
information relevant to structure and function. The idea of
ensemble structure modeling is, of course, also relevant for
folded proteins and their unfolded states, exemplified by studies
starting 25 years ago by Kuriyan et al.29 and continued more

recently by the groups of Vendruscolo and Dobson30,31 and de
Groot and Grubmüller.32 Nilges and co-workers33 first
introduced Bayesian inference to derive a probability
distribution for the folded structure using NMR, and along
with other research, probabilistic frameworks have become an
important theoretical contribution to the problem of ensemble
structure determination.34−39

For folded proteins, the first structures determined by X-
ray,40 NMR,41 and cryoEM42 helped propel their continued
development into robust techniques for providing a concrete,
predictive, and conceptually straightforward model for the
structure−function relationship. For example, scientists at
protein crystallography beamlines have defined an increasingly
automated workflow of tasks needed to solve the 3D structures
of folded globular and membrane proteins and complexes:
determining crystallization conditions; X-ray data collection
from protein crystals; model building, refinement, and
validation.43,44 Computational methods have also advanced to
become critical partners to experiment in providing further
insight through study of protein dynamics, folding kinetics, lead
optimization in drug design, and the transition-state energetics
for enzymatic mechanisms.
However, IDPs are not amenable to static structural

determination methods such as X-ray and electron crystallog-
raphy and microscopy,40,42,45,46 necessitating an adjustment in
the core methodology of protein structure determination for
the so-called “Dark Proteome” that can capture their dynamics
and disorder. Nuclear magnetic resonance (NMR) and small-
angle X-ray scattering (SAXS) are the experimental tools of
choice for characterizing the solution structure and dynamics of
IDPs in an aqueous environment.23,46,47 Even so, since IDPs
typically interconvert between conformations on the ∼ns−ms
time scale, most solution-based experimental observables are
highly averaged and thus obscure the characterization of the
conformational substates of an IDP that are tied to biological
function. Structural descriptions of IDPs/IDRs are highly
under-determined; that is, their number of degrees of freedom
will far exceed the number of experimental restraints. Since
experiments alone will likely be unable to provide a detailed
structural ensemble, it is important to build the connection
between the averaged experimental observables over the IDP
structural ensemble to the conformational sub-populations
within the ensemble6,48−54 using state-of-the-art computational
methods and models.31,55

The quantitative challenge in understanding IDPs is how to
build models of even more diverse structural ensembles relative
to their folded counterparts that allow researchers to gain
insight into their nature, to form hypotheses about their
functional roles, and to target them for small-drug therapeutics.
Thus, in analogy to crystallographic beamlines and their role in
streamlining protein crystallography, we propose that the IDP
community could develop a “computational beamline” to build
up the requisite experimental and computational tools to model
structural ensembles for a broad class of IDPs and IDRs and
their complexes. The computational beamline would serve in
several roles, including as a repository for information from the
best experimental techniques such as NMR and SAXS, to
examine whether other techniques such as circular dichroism
(CD), infrared (IR), electron paramagnetic resonance (EPR)
and double electron−electron resonance (DEER), fluorescence
resonance energy transfer (FRET), and mass spectrometry
(MS) can add valuable information, and to combine relevant
experimental data with the best theoretical tools such as de novo
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molecular dynamics,54−58 Markov state models,59,60 Monte
Carlo methods to sample side-chain ensembles,61 Bayesian
probabilistic analyses,10,34,62 and quantum mechanical methods
to predict NMR observables.63

In this Perspective, we examine the current state of
experimental approaches and computational methods applied
to the IDP problem, and what future directions can be usefully
advanced within each area. Finally, we envision how the two
approaches can be combined into a powerful new resource that
would culminate in a “data analysis end-station” that would
develop and apply new correlative methods to yield quantitative
insight into key structural aspects that define the free and
complexed IDPs to their functionally relevant states.

■ EXPERIMENTAL METHODS AND FUTURE
INNOVATIONS

The current experimental solution methods for characterizing
protein intrinsic disorder include IR, CD, MS, single-molecule
fluorescence spectroscopy, wide-angle X-ray scattering
(WAXS), and the primary techniques of NMR and SAXS.7,50

CD and IR spectroscopy report on the amount of secondary
structure, and hydrodynamic techniques such as SAXS, gel
filtration, and dynamic light scattering (DLS) report on the
radius of gyration or hydrodynamic radius. Lack of a
cooperative folding transition and proteolytic sensitivity are
also attributes of IDPs and some of their complexes that are
useful in forming a complete picture of a certain level of
disorder.
NMR observables that can be used to restrain the IDP

structural ensemble include chemical shifts of backbone and
side-chain nuclei, which aid in structural assignments and probe
conformational information through their surrounding environ-
ment, spin−spin couplings (J-couplings) which independently
report on dihedral angles, and residual dipolar couplings
(RDCs) which have been used to describe the relative
orientation of spatially separated regions of a disordered
protein.64−70 These types of measurements are highly useful in
describing local and/or short-range interactions of the bound
and free IDP state, while global descriptors of order/disorder
are usefully defined through SAXS or SANS experiments for
categorization of a free IDP into collapsed semi-ordered
ensembles, collapsed disordered ensembles, or extended
disordered ensembles,1,2,4,50 based on the distribution of
heavy atom distances. Additional NMR and ESR experiments
such as through-space dipole−dipole interactions that give rise
to the nuclear Overhauser effect (NOE), and paramagnetic
relaxation enhancements (PRE) from an attached spin label,71

as well as the more recent DEER-EPR72,73 experiments, are in
principle information-rich since they report on both local and
nonlocal tertiary structure contacts that would be valuable in
restraining the IDP ensemble.
The joint application of SAXS and NMR to study the

structural ensemble of IDPs has been pioneered based on a
number of developments in North America and Europe. The
SAXS program Ensemble Optimization Method (EOM) by
Bernado, Svergun, Blackledge, and collaborators was designed
to work with NMR observables for IDPs,74−76 and ENSEMBLE
from the Forman-Kay group works with multiple different types
of data, including NMR and SAXS for IDPs.77,78 The SIBYLS
group in the U.S. has developed SAXS analysis for the
characterization of large IDRs,79−81 including the analysis
programs BilboMD and MES,82 which have provided novel and
disease-relevant insights into IDRs. Data deposited into the

SIBYLS based SAXS data repository83 bioisis.net were mined
for the development of quantitative measures of flexibility84 and
the extraction of mass81 even when flexibility is present.
However, in all cases we are still faced with new challenges in

applying these solution-based techniques to IDPs. For example,
the data for optimal characterization of IDPs lie at the extremes
of typical SAXS data for folded proteins since, for their
molecular weight, IDPs can be extremely extended, thereby
requiring very low-Q data from SAXS for the characterization of
maximum dimensions. For example while typical SAXS data
collection standards occur in the Q range of 0.01−0.32 Å−1 with
exposure times of 1 s, for IDPs SAXS data are taken down to a
lower Q value of 0.005 Å−1 and with exposure times rising to
tens of seconds. IDPs can also benefit from WAXS since
localized structural features generally occur over shorter length
scales creating features in the high-Q region of the spectrum.
For NMR the generally poor chemical shift dispersion

(particularly in the 1H dimension) can be mitigated with
optimized pulse sequences for IDPs.85 The pronounced
motional averaging of NOEs has limited the use of NOEs,
and yet the information about intermediate range NOEs may
be particularly important in defining conformational ensembles.
For example, NOE data collected for the Aβ40 and Aβ42
peptides contained ∼1100 and ∼700 crosspeaks, respectively,
but only ∼20% of these can be uniquely determined from
experimental information alone, due to chemical shift
ambiguity, and most of these are due to short-range
intraresidue, sequential, and i to i+2 contacts.57 With the
addition of 13C/15N labeling for resolution in 3D or 4D
experiments, it becomes possible to assign many more NOE
cross-peaks, adding new experimental constraints for ensemble
generation; for example particular combinations of hydro-
phobic amino acids labeled with 13C for the unfolded state N-
terminal SH3 domain of Drk proved to be valuable in these
studies.86−88

Further progress can be made with techniques like PRE
which has been valuable in detecting transient interactions,
particularly intermolecular interactions.89 The power of this
approach comes from the fact that close proximity to an
unpaired electron (on a metal or nitroxide group covalently
bound to the protein) causes a large increase in relaxation rate
that is dependent on the inverse sixth power of the distance
from the spin label. By labeling one binding partner with the
relaxation agent, and the other with isotopes such as 15N for
selective NMR detection, characterization of even transient
complexes is possible.90 This approach can also be applied to
investigate short-lived intramolecular contacts in IDPs, since
the transient folding leads to proximity of the electron and
nuclei, and is again observed through changes in relaxation. But
there are some caveats to this approach that requires careful
calibration when applied to IDPs. First, because of the covalent
attachment of the relaxation agent it can never get very far from
the region of the peptide where it is attached, so there is always
locally enhanced relaxation, although more interesting are the
sites of enhanced relaxation that are far, in the sense of covalent
structure, from the attachment site. The relaxation agents are
invariably larger than an amino acid side chain, and interactions
of the agent with other amino acids may affect the sensitive
energy landscape of the IDP. This requires additional controls
to assess whether this occurs using chemical shifts and NOE
spectra of the modified peptide, or even better a diamagnetic
version using a reduced spin label, or diamagnetic metal
substituting for the paramagnetic one in a chelator, and
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comparing with the unmodified IDP. Nonetheles,s when
carefully calibrated, a number of high-quality PRE experiments
have been successfully carried out on IDPs,71,91 and thus these
experimental methods are particularly promisinga conclusion
which has been nicely reviewed elsewhere.92

DEER gives the distance distribution between two nitro-
xides93 or metal (Gd3+)94-labeled sites, complementing PRE
data where it can be difficult to unambiguously separate spatial
and temporal components of the distance distribution function.
However, DEER measurements have challenges when applied
to IDPs. For DEER measurements the electron relaxation rates
must be reduced by rapid freezing to form a glass at liquid N2
temperatures, and a concern is whether freezing as well as the
addition of the two labels, which may also involve mutations to
create the labeling sites, perturbs the distribution of conformers
present in the unlabeled IDP in solution. A second challenge in
analysis of DEER data on IDPs is extraction of distance from
the dipolar echo modulation pattern, although existing analysis
tools are available such as the DeerAnalysis2013 software.95

IDPs inherently will give rise to a broad distance distribution
for the pairwise electron−electron interactions, so the number
of parameters to be extracted from the data is inherently larger
than for folded proteins, where in favorable cases a single,
narrow distance distribution applies. A priori, it remains unclear
how robust such an analysis will be when taking into account
the limited signal-to-noise and possible systematic sources of
error resulting from finite pulse widths and orientational
selection at high magnetic fields. Therefore, substantial
experimental work is needed to fully explore the potential of
DEER in the analysis of IDPs. We note the significant analogy

of EPR DEER to optical FRET experiments using attached
fluorescent dyes96−98 rather than nitroxides or metals to IDPs;
thus FRET can also be useful for restraining the IDP ensembles
if the similar challenges described for the DEER measurements
can be overcome.
The integration of multiple solution-based experimental

techniques on IDPs requires optimization from both a data
acquisition and analysis perspective. For example, while each
individual SAXS measurement does not contain as much
information as a high-resolution NMR measurement, NMR and
EPR are “low”-throughput techniques, whereas SAXS and DLS
data can be collected and analyzed much more quickly. To
illustrate, ideal IDP concentrations for NMR can be rapidly
identified through the analysis of high-throughput solution
results generated by SAXS for oligomerization and DLS to
determine the maximum concentrations allowed before signals
of aggregation are apparent. Part of the growing resurgence of
SAXS as a technique is that many measurements allow for
relative comparisons on how structure changes with sequence
and conditionstypical of many IDP projects. These ideas
have been advanced by Hura and co-workers through
formulation of a general heat-map-based method79 for
comprehensively viewing several SAXS data sets and
application to the human DNA mismatch repair protein
MutSβ, which contains 300 flexible amino acids (Figure 1).
Although there have been many NMR studies on IDPs, and

some have included other data such as SAXS, there have not
been extensive and systematic evaluations of the value of
different types and combinations of data in defining the IDP
conformational ensemble. However, a few approaches are

Figure 1. Heat map comparing pairs of profiles from multiple experimental techniques including SAXS, DLS, and CD. Each cell is a pairwise
comparison between a condition or construct. Similarity between SAXS curves is measured by the metric Vr and displayed as a gradient color, where
red indicates similarity (low Vr score) and white indicates dissimilarity. The black square diagonals are self-comparisons. Adapted with permission
from ref 79. Copyright 2016 Nature Publishing Group.
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starting to emerge that deal with this important issue. One is a
study99 that performed ENSEMBLE calculations for three IDPs
based on a variety of experimental inputs, including chemical
shifts, RDCs, PREs, and SAXS. Comparison of ensembles
calculated with subsets of the experimental data missing defined
types were used to quantify which measurements most affected
secondary structure, tertiary contacts, and molecular size
distribution, and hence are high priorities for data acquisition
to restrain IDP structural ensembles. It was found that
secondary structure was most strongly restrained using 13Cα

chemical shifts and to some degree using 3JHNHα couplings,
whereas the accuracy of calculated tertiary structure is
dependent on the number of PRE distance restraints used.99

RDCs were found to provide a small but significant probe of
short- to medium-range tertiary structure, whereas SAXS was
important for restraining the size distribution.99

At the same time, if the chemical shifts are not highly
dispersed along the sequence of a particular IDP, such as is
found for the amyloid-β peptides,57 then the chemical shifts
have more limited value as a experimental refinement input or
as a validation measure.55 In addition, the optimization phase of
methods such as ENSEMBLE77,78 and ASTEROIDS47 rely on
heuristic back-calculation methods such as SHIFTX2100 for
chemical shifts, PALES101 for RDCs, and mere structural
approximations to NMR observables such as NOEs, even
though the dynamical origins of NOE intensities can be better
used for determining the IDP ensemble.55 Alternative
approaches based on Bayesian probabilistic modeling can
offer a more solid foundation for examining the usefulness of
experimental data types10,62 as described in the next section.

■ COMPUTATIONAL METHODS AND FUTURE
INNOVATIONS

An important area of IDP research is to build robust all-atom
models of IDP ensembles that can successfully interface with
experimental data to provide predictions of the structural
ensembles of IDP monomers and their complexes. One
approach is to identify sets of conformers that in aggregate
agree with experimental data, to derive the IDP structural
ensemble. Such “experimental data knowledge” methods are
the foundation of NMR structure determination of folded
proteins using experimentally derived constraints based on
NOE data, RDCs, J-couplings, and chemical shifts, embodied in
software packages such as CANDID,102 CYANA,103 X-Plor-
NIH,104,105 and TALOS.106 Most often, experimental data
knowledge approaches for IDPs start with an extensive set of
statistical coil conformations derived from software platforms
such as Flexible-Meccano107 and TraDES,108 which can
generate both coil- an/or various structure-biased conformers.
This basis set of structures is then culled for the subset of
conformations and their populations that are in best agreement
with experimental data to create the IDP ensemble. Examples
are the energy-minima mapping and weighting method,109,110

ENSEMBLE,77,78 and ASTEROIDS.47 ASTEROIDS uses a
genetic search algorithm to select structures that together best
match experimental chemical shifts, PREs, or RDCs47,68 while
the ENSEMBLE method77,78,87,88 selects structures from the
starting pool using a Monte Carlo algorithm with an energy-
weighting scheme for each type of experimental input. These
programs contain modules for several different experimental
data types. For example, ENSEMBLE is able to accommodate
data from a very wide range of sources including chemical
shifts, RDCs, PREs, J-couplings, NOEs, and relaxation rate-

derived contact densities, as well as SAXS77 and hydrodynamic
radii (Rh) from NMR, size exclusion chromatograph or
dynamic light scattering.
In addition to the ENSEMBLE and ASTEROIDS approaches

that use experimental data for conformational selection, a
number of researchers have combined experiment and
computation, applying knowledge from NMR to restrain the
IDP ensemble generated during an MD trajectory.30,111−114 For
example, MD simulations have been combined with RDC
restraint data for folded proteins, which then allows for the
analysis of other features of the ensemble, such as conforma-
tional fluctuations. NMR restrained MD has also been applied
to IDPs such as α-synuclein by incorporating distance restraints
derived from PRE experiments to guide the MD so that the
radius of gyration distribution of the ensemble is in good
agreement with the experimental value.111

While conformer creation and selection methods such as
TraDES,108 ENSEMBLE,77,78 Flexible-Meccano,107 and ASTE-
ROIDS47 have proven very useful to the IDP community,
qualitative changes are required in the theoretical approach to
IDP structure solvers. First, IDP ensemble construction has
typically relied on low-complexity statistical coil descriptions
that are not Boltzmann weighted and do not contain any
important dynamical information55 that can be compared to
NMR observables such as relaxation rates and NOEs. Second,
our ability to back-calculate NMR or SAXS data from structures
is actually very poor, thus losing an important discriminator for
selecting an IDP structural ensemble that is most consistent
with the abundant availability of chemical shift and scalar
coupling experimental data.55,62 Third, characterizing both the
free and bound IDP ensembles is important to understanding
their biology, and the computational techniques must be able to
accurately describe the range of environments from solvent-
exposed disordered monomer ensembles through to protein−
protein complexes where the IDP folds or remains partially or
fully disordered. Thus, we require higher accuracy in IDP
ensemble generation using robust force fields and advanced
sampling methods, including appropriate accounting of time
scales and increased sensitivity of back-calculations with high-
quality NMR spectral simulation tools. Finally, due to the
under-determined nature of the IDP problem, we need to
utilize statistical approaches, such as Bayesian analysis,115,116 to
rank alternate IDP conformational ensembles to determine the
most probable one based on agreement with the experimental
data.
To illustrate this confluence of issues, Brookes and Head-

Gordon developed a Bayesian approach to determine the most
probable IDP structural ensemble model that takes full
advantage of experimental data, their known errors and
variances, and the quality of the theoretical back-calculation
from structure to experimental observables.62 The experimental
inferential structure determination (EISD) method is formu-
lated to determine the most probable structure (for folded
proteins) or structural ensemble (for IDPs) by decomposing
the posterior probability distribution p(X, ξ|D, I) using Bayes’
theorem:

ξ ξ ξ| ∝ | | |p X D I p D X I p I p X I( , , ) ( , , ) ( ) ( ) (1)

where p(D|X,ξ,I) is the conditional probability that relates X =
{X(j)}j=1

N , a structural ensemble containing N structures, to a set
of M experimental data observations D = {di}j=1

M . The
parameters of the Bayesian model are the set of so-called
“nuisance” parameters, ξ, which are uncertain values that
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cannot be determined directly from the data, such as the
uncertainties in the experimental measurements or back-
calculation equations. I represents any prior information
about the system, such as experimental information embodied
in p(ξ|I), or structural information via p(X|I) in which the latter
is typically modeled as either a uniform (uninformative) prior
or using Boltzmann weighting that requires a robust energy
function.
One of the primary advances of the EISD model is that we

use all of the available information about the separate
distributions of different experimental data types. We utilize
the variable quality with which we can back-calculate these
observables, o, from structure, X(j) → {oi

(j)}i = 1
M by optimizing

within the experimental and back-calculation “nuisance”
parameters that are treated as random variables with known
Gaussian distributions, p(ξ(exp)i) and p(ξ(back)i), respectively.
More specifically, the posterior probability can be modeled as
follows:

∑

ξ

ξ ξ

ξ

| ∝ |

+ |
=

p X D I p X I

p d o I p

p

log ( , , ) log ( )

log[ ( , , ) ( )

( )]

i

M

i i i
1

(exp)

(back)

i

i (2)

where

ξ

ξ ξ

| ∈

=
+ =

=

=

⎧
⎨⎪
⎩⎪

p d o o I

d f o
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0 otherwise

i i i
j

j
N

i

i i
j

j

N

( )
1

(exp)
( )

(back)
1i i

(3)

and ⟨···⟩ denotes an average over the candidate IDP ensemble
of structures used to back-calculate experimental observables,
since all that is known for a given NMR measurement on an
IDP is that it corresponds to an average of that measurement
over every structure in the ensemble.
We applied the EISD Bayesian method to evaluate the

relative probabilities of seven qualitatively different structural
ensembles for the Aβ42 IDP monomer: one random coil
ensemble generated from TraDES,108 one ensemble generated
from a replica exchange simulation (de novo MD),55 one
statistical coil ensemble that incorporates bioinformatics
knowledge about independent local secondary structure at
each residue (Pred-SS),55 and four ensembles generated by
adding experimental restraints from NMR (RDCs, NOEs,
scalar couplings, and chemical shifts) operating on the de novo
MD and Pred-SS ensembles using ENSEMBLE (MD-ENS1,
MD-ENS2, MD-ENS4, and Pred-SS-ENS).77,88,99 We used
only two NMR data types, chemical shifts and J-
couplings,55,57,117,118 and an un-informative uniform structural
prior was used to generate the results shown in Figure 2.
Figure 2 indicates that the rankings of the Aβ structural

ensembles primarily depend on our ability to quantitatively
back-calculate from structure to observable, in this case using
SHIFTX2100 for chemical shifts and the Karplus equation for
three-bond couplings,119

ϕ ϕ ϕ= − + − +J A B C( ) cos ( 60) cos( 60)2
(4)

where ϕ represents a dihedral angle of interest, and A, B, and C
are typically parametrized on folded proteins.120−122 A
comparison of parts (a) and (b) of Figure 2 shows that using

chemical shifts and J-couplings on their own results in a large
difference in the structural ensemble rank order. When they are

Figure 2. logp(X, ξ|D, I) evaluated for X equal to the following
qualitatively different ensembles for the Aβ42 monomer: random coil
(RC), statistical secondary structure (Pred-SS), de novo MD, and
ENSEMBLE optimized ensembles (MD-ENS1, MD-ENS2, MD-
ENS4, and Pred-SS-ENS) using (a) chemical shift data only, (b) J-
coupling data only, and (c) J-coupling and chemical shift data together.
Adapted with permission from ref 62. Copyright 2016 American
Chemical Society.

Journal of the American Chemical Society Perspective

DOI: 10.1021/jacs.6b06543
J. Am. Chem. Soc. 2016, 138, 9730−9742

9735

http://dx.doi.org/10.1021/jacs.6b06543


used together in eq 2, the relative rankings among ensembles
are qualitatively unchanged from using J-couplings alone
(Figure 2c). However, whether using J-couplings alone or
together with chemical shifts in the Bayesian model, it still is
not possible to differentiate between the extended RC
ensemble, equivalent to a protein under high denaturant
conditions, and the collapsed and structured MD ensembles
that would be representative of low denaturant conditions.
While adding additional data types such as SAXS or PREs to

the EISD model would certainly help to overcome this
problem, the abundant availability of chemical shift and scalar
coupling data would be better used if back-calculations were
more robust. For example, although improvements realized by
SHIFTX2100 over SHIFTX123 were significant for folded
proteins with the introduction of structural homology
information, the level of difference between the SHIFTX2
and SHIFTX calculators is negligible, as we have shown for the
Aβ42 example,62 since structural homology plays no role for
IDPs. Even for scalar couplings, Karplus anticipated that further
refinements of eq 4 were necessary for quantitative prediction,
such as the inclusion of electron orbital and dipolar electron
spin terms, a more careful choice of underlying electronic
structure methods, consideration of chemical substitutions
when applied to other molecules, the number of bonds
separating spins, and dependence on additional geometric
features such as bond angles or other dihedral angles.119

Although some studies have adopted some of these suggestions,
there is still a primary focus on use of the original Karplus
equation to predict J-couplings of folded and flexible peptides
and proteins, where the constants A, B, and C must capture the
large variations in dihedral fluctuations across many peptide
and protein data sets.122,124

Accordingly, quantitative back-calculations of the NMR and
SAXS observables are clearly a necessary objective to make
better use of the experimental data in order to generate tighter
spatial restraints for discriminating among alternative structural
ensemble models. To be more specific, computational
predictions of chemical shifts in proteins, such as SHIFTX2100

and Sparta,125 rely on knowledge-based algorithms that employ
sequence and/or structural information together with exper-
imental NMR data for folded proteins. Their residual error is
typically only about 3-fold smaller than the typical range of
such shifts, and orders of magnitude larger than the
experimental uncertainty in the measured chemical shift values.

As such, their applicability to partially or fully extended IDP
conformations is clearly limited, and improvements are highly
desirable and may well be absolutely necessary. As Case
recently commented:126 “Although quantum calculations of
chemical shifts in proteins have not yet reached the level of
accuracy obtained by empirical models, there are good reasons
to push forward. Quantum models allow study of unusual
conformations, including fibrils (and) partially disordered
systems.”
Therefore, a future challenge is to deploy (and further

develop) high-accuracy QM-based methods for scalar cou-
plings, and environment-dependent 13C, 1H, and 15N NMR
chemical shifts, accounting for more than intervening dihedral
angles and backbone ϕ and ψ torsion angles, respectively, at
tractable computational cost for characterizing the structural
diversity of IDP ensembles. However, there are three distinct
challenges to improving chemical shift and scalar coupling
back-calculation accuracy. At the basic level, common-place
density functional theory (DFT) suffers from inadequate
accuracy127 for chemical shifts128 because of fundamental
limitations: rigororously, the functional must depend not just
upon the density, but also on the paramagnetic current
density,129 or the field itself,130 which is an unsolved challenge
at present. Another way to push forward is via wave function
methods,131 which are far superior to present-day DFT for
chemical shift calculations (∼10× higher accuracy132) while
advances in QM treatment of spin−spin couplings63 would
need to occur simultaneously.
To illustrate we have compared the chemical shift prediction

capabilities of DFT (using the B3LYP functional) to that
possible with second order Møller−Plesset perturbation theory
(MP2) when benchmarked against a highly accurate CCSD(T)
calculation (Table 1). Using a small blocked dipeptide whose
conformational space is spanned by its backbone ϕ and ψ
dihedral angles, the chemical shifts are computed for every
atom of four diverse conformers (β sheet, extended, α helix, γ
turn) using all three levels of theory with the cc-pVTZ basis set.
The RMSD in the chemical shifts is calculated relative to small
molecule primary references (CH4, NH3, H2O, and H2 for C,
N, O, and H, respectively) and relative to a secondary reference
which is the planar conformer.
Focusing on 13C NMR, the results in Table 1 show that MP2

yields RMS errors that are over 7 times smaller than B3LYP.
This gap is preserved when using the secondary reference,

Table 1. RMSD in ppm of B3LYP DFT and MP2 with Respect to CCSD(T) When Using Small Molecules As the Reference
(Primary) vs a Planar Peptide Reference (Secondary)a

aFour different conformers of glycine dipeptide are used to explore chemical shift accuracies with respect to geometrical changes in ϕ and ψ dihedral
angles. All geometries were optimized at the MP2 level of theory with the φ and ψ dihedral angles constrained to the values shown.
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showing that MP2 yields greater fidelity to the reference for the
biologically relevant shifts in each atom relative to its value in
the reference planar environment. Therefore, given a bonding
motif, the MP2 method does very well (less than 0.1 ppm
relative RMSD for 13C) at predicting how the chemical shift
will change due to changes in bond lengths, angles, and
dihedral angles. Given databases of environment-dependent
calculated NMR chemical shifts of this quality or better, there is
clearly scope for building more accurate software tools for
NMR chemical shift prediction from structure in the future.
This will require incorporation of other environmental effects,
including hydrogen bonding.
These theoretical and methodological advances all operate

on a three-dimensional conformation, and thus they will be
dependent on the generation of representative and complete
IDP structural ensembles. While methods such as Flexible-
Meccano107 and TraDES108 are valuable for generation of
random coil conformers, molecular dynamics simulations are
capable of generating a true Boltzmann weighted ensemble if
the underlying energy surface is accurate and if sampling on this
surface is complete. However, presently available energy
functions that work well for folded proteins are imperfect
when applied to IDPs. Because there are many degrees of
freedom to sample over ns−ms time scales, MD simulations
rely on computationally cheap fixed-charge force fields that
allow for adequate sampling of the conformational space of an
IDP. However, given the range of IDP environments including
extreme solvent exposure in the monomer state through to
buried residue interactions at the IDP−protein complex
interface, a number of new protein and water fixed-charge
force fields offer better balance for the energetics of relative
conformational energies and peptide−water interactions.133−138
Alternatively, polarizable force fields offer the best future hope
for more accuracy,139,140 since they have the necessary physics
to respond to a range of IDP environments experienced by the
free as well as bound states of an IDP. However, polarizable
models come with an increase in computational expense that in
turn limits needed sampling. Nonetheless, recent efforts to
reduce the computational expense of polarizable models are
starting to take hold,141 and thus will be an important future
direction in the simulation of robust IDP structural ensembles.
There is always tension between potential energy surface

accuracy and adequate sampling of conformational space of an
IDP due to its heterogeneous nature, as both increase
computational cost. This requires that we develop sampling
methods that converge faster to the Boltzmann weighted
ensemble for an IDP. Generalized Ensemble (GE) methods
that use temperature, ionic strength, dielectric constant, and
protonation states as the scaling variable142−153 will be
important for IDPs. Markov State Model (MSM) approaches
combined with adaptive sampling (AS) such as the
MinCounts154 algorithm can be tailored to sample the
heterogeneous states of IDPs, including those lacking
preferential structure and those with partial folding.59,154,155

The MinCounts method is a means for pushing sampling to
slow, orthogonal degrees of freedomeven those that have not
been discovered yet. MinCounts looks at the counts of
transitions seen in MD simulations that started in state i and
ended up in state j after some lag time Δt, and runs more
simulations at states with few counts. This has been shown to
be the most effective scheme for adaptive sampling, as shown in
Figure 3,154 and has been applied to numerous systems,
including simple models (where sampling can be tested exactly,

as a “gold standard” is known) as well as in MD simulations of
protein folding, protein unfolded states, and protein conforma-
tional change. Using these sampling methods and the Folding@
home distributed computing project, the Pande laboratory has
simulated the conformational change of kinases156 and
GPCRs156 on the sub-millisecond time scale.60

In addition to backbone degrees of freedom, the generation
of side-chain ensembles for folding upon binding intermediates
and IDP complexes will be necessary. However, theoretical
approaches for sampling the low-energy alternative side-chain
arrangements of a protein is a difficult problem, and while
molecular dynamics (MD) simulations give a good description
of side-chain conformational change on the nanosecond to
microsecond level,157 the experimental estimates indicate that
the time scales are much longer. Therefore, to circumvent the
sampling issues imposed by MD, many groups have resorted to
advanced Monte Carlo (MC) schemes158−160 which are
designed to more exhaustively sample the Boltzmann-weighted
populations of side-chain repackings, especially in the interior
of the protein that may undergo low-probability rotamer
transitions61,159 and have been shown to extend into the
microsecond to millisecond time scale.161

We have recently introduced a new Monte Carlo Side Chain
Ensemble (MC-SCE)61 approach for calculating side-chain
ensembles, entropy, and mutual information that is more
quantitative compared to past efforts, by using a better
convergent Rosenbluth sampling scheme, an augmented
Dunbrack library,162,163 a robust physics-based energy function
using an implicit solvent model, and side-chain rotamer
sampling on a ensemble of backbone structures using backrub
sampling.159 We have now used our MC-SCE algorithm to
generate tens of thousands of different side-chain packings for
hundreds of different protein backbones, including protein−
protein complexes for 60 different protein systems. These
include cryogenically cooled and room-temperature X-ray
crystallographic structures for CypA and H-Ras164,165 as well
as NMR J-coupling data for CypA and Eglin-C, and DHFR
binary complexes of E:THF and E:FOL, in which we found
overall excellent agreement across the full range of X-ray and
NMR data.164,166,167 (see Figure 4). Although the MSM/AS

Figure 3. Convergence time for Fs (capped 21 alanine) peptide
transition matrix generated with various hybrid sampling schemes.
Time is measured in the number of eigenvalue-based trajectories
needed to converge to an absolute error of 2.00 after 1000 initial
trajectories are run from a chosen sampling method. Absolute error is
defined as the sum of absolute deviations in transition matrix elements.
Convergence times for each method were, averaged over 10
simulations, (1) 3913 for pure eigenvalue-based sampling, (2) 2669
for connectivity-based hybrid sampling, (3) 1107 for even sampling
hybrid sampling, and (4) 286 for min count-based hybrid sampling.
Reprinted with permission from ref 154. Copyright 2011 American
Chemical Society.
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and MC-SCE methods have been primarily validated and then
used for prediction on folded proteins, their extension to IDPs
is clearly the next frontier for generation of more complete
structural ensembles.

■ CREATING A COMPUTATIONAL BEAMLINE FOR
IDP ENSEMBLES

The traditional structural biology approach of crystal structure
visualization and analysis operations done on a single set of
coordinates ultimately fails when applied to IDP ensembles.
The goal of an IDP computational beamline is to better
connect observed structural or dynamical motifs derived from
the interplay of experiment and computation into functional
relevance for free IDPs and their bound complexes. We
envision a central resource that will integrate experimental and
simulation data, simulation codes, and analysis tools across the
IDP research community (Figure 5). The computational
beamline will run workflows of software to create structural
ensembles, store and index the variety of data types that help
create, restrain, and/or validate ensembles, and collect analyses
into an analysis end station that would formulate hypotheses
about the relevance of structural ensembles to biological
function.
To scale up the execution of software tools from a handful of

manually managed runs to thousands of runs continuously
executing on parallel computing resources, the computational
beamline will use proven scientific workflow software. For
example, The Materials Project has developed a high-
throughput workflow software called FireWorks53 that has
run millions of materials science calculations on super-
computers at national laboratories and cloud resources such
as in the NSF XSEDE project. Scientific workflow software like
FireWorks automatically manages multistep, branching, and

iterative calculations, and can continuously launch and monitor
new calculations from a queue spanning months of time and
many millions of computer hours.
While more sophistication in workflow software will

dramatically increase the capability to perform experiments
and gather new data, this scale of computation will also
introduce new challenges: re-creating and de-bugging runs is no
longer within the capacity of a single person’s memory. In order
to know exactly which code produced which result, there must
be a disciplined curation of all the relevant software tools used
and developed in the IDP community, including methodology
such as ENSEMBLE, QM back-calculations, Bayesian analysis,

Figure 4. J-coupling constants: (a) 3JCγN and (b) 3JCγCO for the DHFR binary product complex E:THF, and (c) 3JCγN and (d) 3JCγCO for the DHFR
binary product complex E:FOL. The red symbols are the experimental data from ref 167. The blue symbols are calculated from the MC-SCE
ensemble using backbones from molecular dynamics and the Karplus parametrization from ref 167. Reprinted with permission from ref 61.
Copyright 2015 Elsevier.

Figure 5. Conceptualization of a computational beamline for the IDP
community.
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and advanced methods to derive the detailed structural
ensembles of IDPs and their complexes using new force fields
and backbone and side-chain sampling methods. We envision
that workflow software like FireWorks could be used to take an
IDP of interest and combine multiple methodologies into a
single workflow, then run that workflow in parallel and for a
large number of timesteps on a cluster or supercomputer,
automatically collecting all the results generated during the run.
The computational beamline workflows will enable auto-

mated and systematic collection of the results of the
calculations into a central data repository, and a second type
of “data-intensive” workflow will perform the same function to
continuously collect and normalize the available experimental
data. Consequently, the computational beamline data reposi-
tory will integrate all available experimental data, all spectral
simulations, and finally calculated ensemble data into an
integrated data resource. The data repository would develop
methods to ingest and organize a wide variety of experimental
data (i.e., SAXS, NMR, FRET, DEER-EPR, etc.) and conformer
ensembles, with data categorized and coded according to a
common vocabulary. Use of industry-standard database
technologies will provide powerful and flexible search
capabilities. Data sharing to external databases such as BioIsis
(bioisis.net),83 pE-DB,168 and BMRB (www.bmrb.wisc.edu)169

could be performed from this repository and made accessible to
the IDP community.
Just as in a cyclotron or synchrotron, the scientific impact of

a computational beamline aso depends on the capabilities of the
“analysis end-station”, where IDP researchers can derive
knowledge from the integrated experimental and simulation
data with new correlative methods that would enable
collaborative and reproducible analyses via flexible interfaces
and web-enabled analysis environments, such as the Jupyter170

notebook. The end-station could provide a set of trans-
formations to extract selected result sets into the formats and
parameters that are needed to feed into other existing or new
analysis tools. The analysis end-station could first build upon
existing analysis tools such as DSSP,171 k-means clustering, or
Principal Components Analysis and combine them with new
analysis protocols such as hydrophobic and electrostatic
clustering, identification of regions of compaction or extension,
and probabilistic contact maps to define short- and long-range
interactions.
We can also envision even more novel analysis tools for IDPs

based on kinetic clustering from Markov State Models
(MSMs).59,60,154 Kinetic clustering is a natural outcome of
MSMs, and would bring to the IDP community a much more
physical, natural, and biologically relevant means to conceptu-
alize IDPs by clustering not due to geometric similarity (which
may or may not be relevant for function), but due to kinetic
similarity, i.e., grouping structures together in a cluster if they
rapidly interconvert kinetically, which is a natural and very
physical definition for a “state”, versus structures that
interconvert more slowly and thus can be classified as distinct
sub-populations. Finally, data mining and machine learning
methods will play a particularly important role in IDPs,
especially in determining and understanding key structural or
dynamical motifs that are difficult to identify just by visual
inspection, including repeated transient structure and more
sophisticated correlative motions.

■ SUMMARY
One of the central primary objectives of IDP research is to
provide atomic level structural and dynamical information on
the free IDP conformational ensembles and their relationships
to the ensembles of IDP complexes exhibiting a broad range of
order to disorder that is important for understanding their
function. Given the fact that IDPs/IDRs are underdetermined
systems, and thus a unique structural ensemble cannot be
defined by experiment alone, three important areas for future
progress have been identified. First is large-scale experimental
data acquisition, including defining the most information-rich
experimental techniques to provide for discriminatory
information between competing ensemble definitions for
IDPs. Second is improving the accuracy of IDP ensemble
model generation (free and bound forms) with (i) advanced
molecular simulation approaches, (ii) new QM/MM spectral
simulation tools that enhance the discriminatory power of the
solution-based experimental techniques, and (iii) probabilistic
models such as recent Bayesian formulations to provide
measures of uncertainty quantification in the experimental
and simulation data generated. Third is centralizing the
experimental data and computational tasks into an automated
workflow, including development of a comprehensive set of
analysis tools that can connect observed structural or dynamical
motifs with functional relevance to the biological questions
being addressed in a wide range of IDP projects. The need for
collaborative teamwork to create this infrastructure is obvious,
as are the ultimate benefits to the IDP and general protein
structural communities.
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